汽车研发:DC/DC转换器介绍及其应用与研究(之二)

科米罗新能源2019-03-14 14:46:52

四、双向DC/DC在电动车中的应用

目前,大多数的DC/DC转换器都是单向工作的,即通过转换器的能量流动的方向只能是单向的。然而,对于需要能量双向流动的场合,例如超容量电容器在电动汽车中的应用,如果仍然使用单向DC/DC转换器,则需要将两个单向DC/DC转换器反方向并联使用,这样的做法虽然可以达到能量双向流动的目的,但是总体电路会变得非常复杂,双向DC/DC转换器就是可以完成这种功能的窟流转换器。


双向DC/DC转换器是指在保持交换器两端的直流电压极性不变的情况下,根据实际需要完成能量双向传输的直流转换器。双向DC/DC转换器可以非常方便地实现能量的双向传输,使用的电力电子器件数目少,具有效率高、体积小和成本低等优势。由于双向DC/DC转换器具有以上优点,使其在电动汽车的发展过程中得到了广泛的应用。

1
直流电动机驱动系统

电动汽车发展初期,因为直流电动机结构简单,技术比较成熟,具有优良的电磁转矩特性,所以直流电动机得到了广泛的应用。对于采用直流电动机的电动汽车而言,下图所示为常见的利用双向DC/DC转换器的驱动系统结构图。

2
交流电动机驱动系统

在之前的电动机使用中,直流电动机存在价格高、体积和质量大、维护困难等缺点,因而,电动汽车用电动机正在逐渐由直流向交流方向发展,目前,直流电动机基本上已经被交流电动机、永磁电动机所取代。在这些应用场合,双向DC/DC转换器可以调节逆变器的输入电压,并且可以实现再生回馈制动。下图所示为这种驱动系统的结构圈。

电动汽车用电动机是一些具有较低输入感抗的交流电动机,由于它具有高功率密度、低转动惯量、转动平滑以及低成本等优点,因此得到了越来越多的应用。对于这种交流电动机如果仍然采用通常的固定直流母线电压脉宽调制的驱动方式,较低的输入感抗必然会导致电动机电流波形中出现较大的纹波,同时会造成很大的铁损耗和开关损耗,使用双向DC/DC转换器就可以很好地解决这个问题。

当采用这类电动机直接驱动电动汽车车轮时,由于电动机电流波形的纹波是与加在电动机输入端子上电压的瞬时值和电动机反电动势之间的电压差值成正比的,因此利用双向DC/DC转换器可以根据电动机的转速来不断调整逆变器的直流侧输入电压,从而减小电动机电流波形的纹波。另外,通过控制反向制动电流,双向DC/DC转换器可以将机械能回馈到蓄电池组或是一一个附加的超容量电容器中,从而达到提高接车效率的目的。


电动汽车车载电动机是无刷直流电动机(BDCM),在基速之上为了实现恒功率运行可以采用弱磁控制方式,然而,弱磁控制会导致电动机效率的下降以及增加电动机转子设计的复杂性。


因而提出在基速之上可以通过直流升压转换器将蓄电池组的直流电压升高以扩大无刷直流电动机的速度范围。电动机的电压升高,电流随之下降,恒功率运行方式得以实现。由于回馈制动的需要,因此也必须采用双向DC/DC转换器。

五、大功率DC/DC在电动车的应用

大功率的DC/DC在汽车电气化系统里面起到了一个关键的作用,但也与逆变器这种和车辆安全有着直接关联的设备有着本质的区别,如下表中不同产品的附加值,与是否涉及核心的车辆安全有直接的关系,更会影响到整车企业是否想把部件做成in-house的部件。汽车上所涉及的DC/DC主要有三种类型。

1
高低压转换器(辅助功率模块)

此模块的主要作用是取代传统的12V发电机。如下图所示,强混以上的系统之中,发动机输出的动力直接驱动高压继电器对高压电池系统进行补电,传统的12V用电负荷,则完全依靠这个DC/DC变压器供给,因此传统的用电负荷补给也就落实到了这里。此类器件,几乎所有的新能源汽车都会应用,功率范围从1KW~2.2KW,也是未来48V系统的一个核心元件,将对此器件进行展开。

2
12V电压稳定器

如下图所示,12V电压稳定器主要是用在部分Start-Stop系统(如果有可能,后续对Start-Stop将要做个分类,目前在欧洲SS系统已经应用非常广泛了。在启动过程中,如果采用某种架构用来防止电压波动对一些敏感器件产生影响。这里的敏感负载,主要包括用户可见的用电负载,如内饰灯和收音机等。电压稳压器的功率等级,随着敏感用电器的负荷而定,一般为200~400W;总体而言,此类器件功率等级较小,成本要求较为苛刻,欧洲的零部件厂家切入较早,这类器件的技术已经非常成熟。

3
高压升压器

这种高压升压器是一种选择性的架构,主要是某些整车企业,为了提高动力系统的效率,选择用一个Boost的升压器来提高逆变器输入的总线电压。因此,这个部件集成在逆变器里面,作为动力总成的一部分。此类器件,由于在特定的部件条件下,通过系统设计优化出来的一个附带产物,并不是每个整车企业都需要选择,特别是随着锂电化带来的系统电压等级的升高,这个器件对于普通的零配件企业而言不是很好的机会。

4
高低压转换器性能评价技术指标

DC/DC的部件主要有以下的技术指标,如下表所示(以Denso及TDK为例):

1)功率等级

不同等级的车辆,往往在配置上存在非常大的差异,导致14V系统的动态功率需求变化。按照模块化开发的理念,选择不同的功率等级,来匹配不同等级的车辆,经过电气平衡之后,就可以覆盖很多的车型。这算是目前较为流行的做法。

2)效率

对这个部件而言,效率是个极端重视的目标。它既决定了整个部件的散热方式,也决定了整个部件的寿命。评价效率的时候,往往采用与输出电流对应的效率曲线来表征,单个点上的最大效率其实是个很有欺骗性的数据。

3)容积&重量&功率密度

部件一体化的设计,目前对于部件的体积和重量都有着苛刻的要求,从上面的图形来看,在这两个指标上,演进是较为迅速的。

4)散热方式

同大部分功率电子部件一样,在2KW左右的等级上,有主动风冷和液冷两种方式。前者对于系统风道有要求,后者对于冷却液管路的排布有着限制。即使开发出来可用的部件,在整车集成的时候,散热也是一个很大的问题点。

5)成本

目前来说,这个部件的成本要求是非常严格的,所以全桥这样的拓扑结构所需要的MOSFET较多,也会被人放弃掉。

4
DC/DC设计瓶颈

对于这个部件来说,先进的拓扑结构其实并不是很高的壁垒,对于安全性要求较高的电动汽车来说,隔离设计是必须的。其设计难点为:

1)热设计

对DC/DC需要进行良好的热设计,对液冷需要设计较好的流道。

2)EMC设计

需要设计输入滤波器以及输出滤波器,以确保EMC能过关,这点在汽车上应用尤其关键。

3)效率

在不同的输入电压条件下,达到较高的效率曲线。

4)保护功能设计

设计各种保护功能,以匹配整个输入电压曲线,以及12V保护系统要求。

5)可制造性要求

至少要可能达到半自动化的要求,因此对于整个板级的设计以及功率电路的连接都比较关键。如果电气化的量能够按照混合动力这么发展,未来制程的要求就成为筛选供应商的一个重要的条件。

六、结语

电动汽车在近年来发展迅速,然而在现有的技术条件下,动力电池的性能是电动汽车发展的主要瓶颈,其作为车载能源大都有一个缺点,即输出电压电流特性偏软,在干扰下容易工作不稳定,所以DC/DC的深入研究显得尤为重要。


Copyright © 丰城计算器学习组@2017